1.重庆中央公园有卖香水的地方吗

2.石灰岩简介及详细资料

3.松香拔鸭毛?

4.重庆适合种麻疯果吗?

5.磷酸是怎样生产出来的

重庆工业合成甘油价格多少_工业甘油是什么

新能源汽车是指用非常规的车用燃料作为动力来源(或使用常规的车用燃料,但用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。新能源汽车包括有:混合动力汽车(HEV)、纯电动汽车(BEV)、燃料电池汽车(FCEV)、氢发动机汽车以及燃气汽车、醇醚汽车等等。 混合动力是指那些用传统燃料的,同时配以电动机/发动机来改善低速动力输出和燃油消耗的车型。按照燃料种类的不同,主要又可以分为汽油混合动力和柴油混合动力两种。国内市场上,混合动力车辆的主流都是汽油混合动力,而国际市场上柴油混合动力车型发展也很快。

优点:

1、用混合动力后可按平均需用的功率来确定内燃机的最大功率,此时处于油耗低、污染少的最优工况下工作。需要大功率内燃机功率不足时,由电池来补充;负荷少时,富余的功率可发电给电池充电,由于内燃机可持续工作,电池又可以不断得到充电,故其行程和普通汽车一样。

2、因为有了电池, 可以十分方便地回收制动时、下坡时、怠速时的能量。

3、在繁华市区,可关停内燃机,由电池单独驱动,实现“零”排放。

4、有了内燃机可以十分方便地解决耗能大的空调、取暖、除霜等纯电动汽车遇到的难题。

5、可以利用现有的加油站加油,不必再投资。

6、可让电池保持在良好的工作状态,不发生过充、过放,延长其使用寿命,降低成本。

缺点:长距离高速行驶基本不能省油。 电动汽车顾名思义就是主要用电力驱动的汽车,大部分车辆直接用电机驱动,有一部分车辆把电动机装在发动机舱内,也有一部分直接以车轮作为四台电动机的转子,其难点在于电力储存技术。本身不排放污染大气的有害气体,即使按所耗电量换算为发电厂的排放,除硫和微粒外,其它污染物也显著减少,由于电厂大多建于远离人口密集的城市,对人类伤害较少,而且电厂是固定不动的,集中的排放,清除各种有害排放物较容易,也已有了相关技术。由于电力可以从多种一次能源获得,如煤、核能、水力、风力、光、热等,解除人们对石油日见枯竭的担心。电动汽车还可以充分利用晚间用电低谷时富余的电力充电,使发电设备日夜都能充分利用,大大提高其经济效益。有关研究表明,同样的原油经过粗炼,送至电厂发电,经充入电池,再由电池驱动汽车,其能量利用效率比经过精炼变为汽油,再经汽油机驱动汽车高,因此有利于节约能源和减少二氧化碳的排量,正是这些优点,使电动汽车的研究和应用成为汽车工业的一个“热点”。有专家认为,对于电动车而言,目前最大的障碍就是基础设施建设以及价格影响了产业化的进程,与混合动力相比,电动车更需要基础设施的配套,而这不是一家企业能解决的,需要各企业联合起来与当地部门一起建设,才会有大规模推广的机会。

优点:技术相对简单成熟,只要有电力供应的地方都能够充电。

缺点: 蓄电池单位重量储存的能量太少,还因电动车的电池较贵,又没形成经济规模,故购买价格较贵,至于使用成本,有些试用结果比汽车贵,有些结果仅为汽车的1/3,这主要取决于电池的寿命及当地的油、电价格。 燃料电池汽车是指以氢气、甲醇等为燃料,通过化学反应产生电流,依靠电机驱动的汽车。其电池的能量是通过氢气和氧气的化学作用,而不是经过燃烧,直接变成电能或的。燃料电池的化学反应过程不会产生有害产物,因此燃料电池车辆是无污染汽车,燃料电池的能量转换效率比内燃机要高2~3倍,因此从能源的利用和环境保护方面,燃料电池汽车是一种理想的车辆。

单个的燃料电池必须结合成燃料电池组,以便获得必需的动力,满足车辆使用的要求。

近几年来,燃料电池技术已经取得了重大的进展。世界著名汽车制造厂,如戴姆勒-克莱斯勒、福特、丰田和通用汽车公司已经宣布,在2004年以前将燃料电池汽车投向市场。燃料电池轿车的样车正在进行试验,以燃料电池为动力的运输大客车在北美的几个城市中正在进行示范项目。在开发燃料电池汽车中仍然存在着技术性挑战,如燃料电池组的一体化,提高商业化电动汽车燃料处理器和部汽车制造厂都在朝着集成部件和减少部件成本的方向努力,并已取得了显著的进步。

与传统汽车相比,燃料电池汽车具有以下优点:

1、零排放或近似零排放。

2、减少了机油泄露带来的水污染。

3、降低了温室气体的排放。

4、提高了燃油经济性。

5、提高了发动机燃烧效率。

6、运行平稳、无噪声。 氢动力汽车是一种真正实现零排放的交通工具,排放出的是纯净水,其具有无污染,零排放,储量丰富等优势,因此,氢动力汽车是传统汽车最理想的替代方案。与传统动力汽车相比,氢动力汽车成本至少高出20%。中国长安汽车在2007年完成了中国第一台高效零排放氢内燃机点火,并在2008年北京车展上展出了自主研发的中国首款氢动力概念跑车“氢程”。

随着“汽车社会”的逐渐形成,汽车保有量在不断地呈现上升趋势,而石油等却捉襟见肘,另一方面,吞下大量汽油的车辆不断排放着有害气体和污染物质。最终的解决之道当然不是限制汽车工业发展,而是开放替代石油的新能源,燃料电池车的四轮快速又安静地滚过路面,辙印出新能源的名字——氢。

几乎所有的世界汽车巨头都在研制新能源汽车。电曾经被认为是汽车的未来动力,但蓄电池漫长的充电时间和重量使得人们渐渐对它兴味索然。而2009年的电与汽油合用的混合动力车只能暂时性地缓解能源危机,只能减少但无法摆脱对石油的依赖。这个时候,氢动力燃料电池的出现,犹如再造了一艘诺亚方舟,让人们从危机中看到无限希望。

以氢气为汽车燃料这种说法刚出来时吓人一跳,但事实上是有根据的。氢具有很高的能量密度,释放的能量足以使汽车发动机运转,而且氢与氧气在燃料电池中发生化学反应只生成水,没有污染。因此,许多科学家预言,以氢为能源的燃料电池是21世纪汽车的核心技术,它对汽车工业的革命性意义,相当于微处理器对计算机业那样重要

优点:排放物是纯水,行驶时不产生任何污染物。

缺点:氢燃料电池成本过高,而且氢燃料的存储和运输的技术条件非常困难,因为氢分子非常小,极易透过储藏装置的外壳逃逸。另外最致命的问题,氢气的提取需要通过电解水或者利用天然气,如此一来同样需要消耗大量能源,除非使用核电来提取,否则无法从根本上降低二氧化碳排放。 燃气汽车是指用压缩天然气(CNG)、液化石油气(LPG)和液化天然气(LNG)作为燃料的汽车。世界上各国都积极寻求解决这一难题,开始纷纷调整汽车燃料结构。燃气汽车由于其排放性能好,可调正汽车燃料结构,运行成本低、技术成熟、安全可靠,所以被世界各国公认为当前最理想的替代燃料汽车。

燃气仍然是世界汽车代用燃料的主流,在我国代用燃料汽车中占到90%左右。美国的目标是,到2010年,公共汽车领域有7%的汽车使用天然气,50%的出租车和班车改为专用天然气的汽车;到2010年,德国天然气汽车数量将达到10万至40万辆,加气站将由180座增加到300座。

业内专家指出,替代燃料的作用是减轻并最终消除由于石油供应紧张带来的各种压力以及对经济发展产生的负面影响。中国仍将主要用压缩天然气、液化气、乙醇汽油作汽车的替代燃料。汽车代用燃料能否扩大应用,取决于中国替代燃料的、分布、可利用情况,替代燃料生产与应用技术的成熟程度以及减少对环境污染等;替代燃料的生产规模、投资、生产成本、价格决定着其与石油燃料的竞争力;汽车生产结构与设计改进必须与燃料相适应。

以燃气替代燃油将是中国乃至世界汽车发展的必然趋势。我国应尽快组织力量,制定出国家级燃气汽车政策。考虑到我国能源安全主要是石油的状况,发展包括燃气汽车在内的各种代用燃料汽车,已是刻不容缓的事,根据国情应该做到:

一是要限制燃气价格,使油、气价格之间保持合理的差价,如四川省、重庆市的油、气差价,即可保证燃气汽车适度发展;

二是鉴于加气站投资大,回收期长,适当给予一定补贴,在加气站售出的气价和汽车用户因用气节省的燃料费用之间,调节好利益分配;

三是对加气站的所得税,应参照高新技术产业开发区政策,取免二减三的税收政策;

四是将加气站用电按照特殊工业用电对待,电价从优;另外,对加气站用地,能按重大项目和环保产业对待,特事特办,不要互相推诿、扯皮,积极用国外先进建站标准,科学确定消防安全距离,节省土地。 乙醇俗称酒精,通俗些说,使用乙醇为燃料的汽车,也可叫酒精汽车。用乙醇代替石油燃料的活动历史已经很长,无论是从生产上和应用上的技术都已经很成熟,由于石油紧张,汽车能源多元化趋向加剧,乙醇汽车又提到议事日程。

世界上已有40多个国家,不同程度应用乙醇汽车,有的已达到较大规模的推广,乙醇汽车的地位日益提升。

在汽车上使用乙醇,可以提高燃料的辛烷值,增加氧含量,使汽车缸内燃烧更完全,可以降低尾气的害物的排放。

乙醇汽车的燃料应用方式:

一、掺烧,指乙醇和汽油掺合应用。在混合燃料中,乙醇和容积比例以“E”表示,如乙醇占10%,15%,则用E10,E15来表示,掺烧占乙醇汽车占主要地位。

二、纯烧,即单烧乙醇,可用E100%表示,应用并不多,属于试行阶段;

三、变性燃料乙醇,指乙醇脱水后,再添加变性剂而生成的乙醇,这也是属于试验应用阶步;

四、灵活燃料,指燃料既可用汽油,又可以使用乙醇或甲醇与汽油比例混合的燃料,还可以用氢气,并随时可以切换。如福特,丰田汽车均在试验灵活燃料汽车。 发展

柴油作为一种重要的石油连炼制产品,在各国燃料结构中占有较高的份额,以成为重要的动力燃料。随着世界范围内车辆柴油化趋势的加快,未来柴油的需求量会愈来愈大,而石油的日益枯竭和人们环保意识的提高,大大促进了世界各国加快柴油替代燃料的开发步伐,尤其是进入了20世纪90年代,生物柴油以其优越的环保性能受到了各国的重视。生物柴油

生物柴油(Biodiesel)是指以油料作物、野生油料植物和工程微藻等水生植物油脂以及动物油脂、餐饮垃圾油等为原料油通过酯交换工艺制成的可代替石化柴油的再生性柴油燃料。生物柴油是生物质能的一种,它是生物质利用热裂解等技术得到的一种长链脂肪酸的单烷基酯。生物柴油是含氧量极高的复杂有机成分的混合物,这些混合物主要是一些分子量大的有机物,几乎包括所有种类的含氧有机物,如:醚、酯、醛、酮、酚、有机酸、醇等。

主要特性

炼油企业为了向市场提供清洁油品使燃烧柴油尾气排放达到标准要求,需要取以下三种措施:一是要有性能优异的深度加氢脱硫催化剂,以脱除难以加氢脱硫的4,6-二甲基苯并噻吩等芳香基硫化合物;二是要有抗硫的贵金属芳烃饱和催化剂,能使芳烃加氢饱和在较低压力下进行,以节省投资;三是要有提高十六烷值的工艺。而生物柴油以其优异的环保性能可很容易达到世界燃油规范的柴油Ⅱ、Ⅲ类标准要求。

众所周知,柴油分子是由15个左右的碳链组成的,研究发现植物油分子则一般又14~18个碳链组成,与柴油分子中碳数相近。因此生物柴油就是一种用油彩籽等可再生植物油加工制取的新型燃料。按化学成分分析,生物柴油燃料是一种高脂酸甲烷,它是通过以不饱和油酸C18 为主要成分的甘油脂分解而获得的[1]。与常规柴油相比,生物柴油下述具有无法比拟的性能。

(1) 具有优良的环保特性。主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%(有催化剂时为70%);生物柴油中不含对环境会造成污染的芳香族烷烃,因而废气对人体损害低于柴油。检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患碍率;由于生物柴油含氧量高,使其燃烧时排烟少,一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油的生物降解性高。

(2) 具有较好的低温发动机启动性能。无添加剂冷滤点达-20℃。

(3) 具有较好的润滑性能。使喷油泵、发动机缸体和连杆的磨损率低,使用寿命长。

(4) 具有较好的安全性能。由于闪点高,生物柴油不属于危险品。因此,在运输、储存、使用方面的有是显而易见的。

(5) 具有良好的燃料性能。十六烷值高,使其燃烧性好于柴油,燃烧残留物呈微酸性使催化剂和发动机机油的使用寿命加长。

(6) 具有可再生性能。作为可再生能源,与石油储量不同其通过农业和生物科学家的努力,可供应量不会枯竭。

生物柴油的优良性能使得用生物柴油的发动机废气排放指标不仅满足欧洲Ⅱ号标准,甚至满足随后即将在欧洲颁布实施的更加严格的欧洲Ⅲ号排放标准。而且由于生物柴油燃烧时排放的二氧化碳远低于该植物生长过程中所吸收的二氧化碳,从而改善由于二氧化碳的排放而导致的全球变暖这一有害于人类的重大环境问题。因而生物柴油是一种真正的绿色柴油。

发展趋势

现代柴油机促使汽车车型柴油化的趋势加快

在欧洲,1999年新购柴油轿车比例约为30%,法国甚至达到48%。2000年,欧洲市场上柴油轿车的销售量达到440万辆,比1995年翻了一倍。3013年经济型轿车主要生产厂商如大众、雷诺、和福特的顾客中,几乎有一半需要柴油车。2013年,在欧洲轿车市场上,新型柴油轿车购买率达30%,专家预言:到2006年,欧洲每2辆新车中就有1辆是柴油车。在美国市场上,商用车(即我国所称的卡车、客车)的90%为柴油车;在日本,将近10%的轿车是柴油轿车,38%的商用车为柴油车。美国、日本及欧洲的重型汽车全部使用柴油机为动力。许多国家在税收、燃料供应等方面予以政策上的倾斜,敦促柴油发动机的普及和发展。 我国柴油汽车生产比例已由1990年的15%上升到1998年的26%。19年我国生产的重型载货汽车和大型客车全部用柴油发动机;65.9%中型载货汽车用柴油发动机,53.5%中型客车用柴油发动机;55.4%和29.4%的轻型载货汽车、轻型客车也开始用柴油发动机。我国1994年颁布的《汽车工业产业政策》明确提出,总重量超过5 t的载客汽车载货汽车在2000年后主要用柴油为燃料。在未来的几年,是中国汽车工业腾飞的时代。因此,我国柴油车产量的增长趋势还将继续下去,汽车柴油化是中国汽车工业的一个发展方向。

汽车车型柴油化趋势的加快主要是由于现代柴油机用了电控发动机控制系统、高压燃油直喷式燃烧系统以及废气排放控制装置,已完全克服了传统柴油机的缺点,能够满足现行的国际排放标准,而这些装置和技术要求柴油含硫量低,有良好的安定性及润滑性,较高的十六烷值和清净性等。随着现代柴油机使用生物柴油燃料技术的成熟,2013年在世界范围内出现的这种汽车车型柴油化趋势会进一步加快。据专家预测,在2010年以前,是柴油需求年均增长3.3%,到2010年,世界柴油的需求量将从2013年目前的38%增加到45%。而世界范围内柴油的供应量严重不足,给生物柴油留下广阔的发展空间。 很多年前,已经有科学家预言——世界上终有这么一天,用水就可以驱动汽车。今天,虽然这一步还未达到,但以水中的氢气作为动力来源的科技却已经变为现实,来自日本的“丰田”汽车,就成功研制出一辆通过氢和氧化学反应而进行发电的新一代电动汽车,取名为FCEV。

FCEV,英文Fuel Eiectric Vehicle的缩写,中文名称正确应该是甲醇型燃料电池电动汽车。顾名思义,FCEV的主要燃料就是甲醇(即我们俗称的酒精)。在汽车上,仍旧保留油缸,但注入的不是汽油,则是甲醇,在引擎室内,则安装了由蒸发部、调整部及减少一氧化碳等三个部分组成的甲醇调整器,当燃料泵将甲醇(CH3OH)和水(HO2)的混合液体从油缸送至调整器时,在蒸发部加热会变为蒸汽,再在调整部经催化剂作用下,就成氢(H2)和二氧化碳(CO2)气体,此时,微量的有害一氧化碳(CO)气体会经过减少一氧化碳部被消减,最后,只剩下氢气及二氧化碳会被送到燃料电池的氢极,经过化学反应而成为电能,就这样,甲醇就可不断通过调整器而变成电能,从而驱动汽车行驶。

这种甲醇动力汽车的优点,不用说当然是达到环保目的,经反复测试显示,它的士气二氧化碳排放量只及变通汽车的二分之一以下,至于一氧化碳、碳氢化合物、氮氧化合物等有害物质的排放量虽然还未至于零的地步,但已经达到非常低的指数;再者,甲醇成本比汽油要低得多,加满一次即可连续行车四、五百公里,而且最难得的是,FCEV无须将油缸改装去迁就,只要将现时的油缸改存甲醇就能够成事,简单经济,具有很大的发展潜力。

重庆中央公园有卖香水的地方吗

1.(2011江苏高考11)β—紫罗兰酮是存在于玫瑰花、番茄等中的一种天然香料,它经多步反应可合成维生素A1。

下列说法正确的是

A.β—紫罗兰酮可使酸性KMnO4溶液褪色

B.1mol中间体X最多能与2molH2发生加成反应

C.维生素A1易溶于NaOH溶液

D.β—紫罗兰酮与中间体X互为同分异构体

解析:该题以“β—紫罗兰酮是存在于玫瑰花、番茄等中的一种天然香料,它经多步反应可合成维生素A1”为载体,考查学生对有机化合物的分子结构、官能团的性质、同分异构体等基础有机化学知识的理解和掌握程度。

A.β—紫罗兰酮中含有还原性基团碳碳双键,可使酸性KMnO4溶液褪色。

B.1mol中间体X含2mol碳碳双键和1mol醛基,最多能与3molH2发生加成反应

C.维生素A1以烃基为主体,水溶性羟基所占的比例比较小,所以难于溶解于水或水溶性的溶液如NaOH溶液。

D.β—紫罗兰酮比中间体X少一个碳原子,两者不可能互为同分异构体。

答案:A

2.(2011浙江高考11)褪黑素是一种内源性生物钟调节剂,在人体内由食物中的色氨酸转化得到。

下列说法不正确的是

A.色氨酸分子中存在氨基和羧基,可形成内盐,具有较高的熔点

B.在色氨酸水溶液中,可通过调节溶液的pH使其形成晶体析出

C.在一定条件下,色氨酸可发生缩聚反应

D.褪黑素与色氨酸结构相似,也具有化合物的特性

解析:A.正确。氨基酸形成内盐的熔点较高。

B.正确。氨基酸在等电点时,形成内盐,溶解度最小,易析出晶体。

C.正确。

D.错误。褪黑素的官能团为酰胺键,结构不相似。

答案:D

评析本题是一道有机题,考查了氨基酸的性质,特别是等电点的应用,同时能在辨认、区别色氨酸和褪黑素的官能团。

3.(2011北京高考7)下列说法不正确的是

A.麦芽糖及其水解产物均能发生银镜反应

B.用溴水即可鉴别苯酚溶液、2,4-已二烯和甲苯

C.在酸性条件下,CH3CO18OC2H5的水解产物是CH3CO18OH和C2H5OH

D.用甘氨酸( )和丙氨酸( )缩合最多可形成4种二肽

解析:麦芽糖属于还原性糖可发生银镜反应,麦芽糖的水解产物是葡萄糖,葡萄糖也属于还原性糖可发生银镜反应,A正确;苯酚和溴水反应生成白色沉淀,2,4-已二烯可以使溴水褪色,甲苯和溴水不反应,但甲苯可以萃取溴水中的溴,甲苯的密度比水的小,所以下层是水层,上层是橙红色的有机层,因此可以鉴别,B正确;酯类水解时,酯基中的碳氧单键断键,水中的羟基与碳氧双键结合形成羧基,所以CH3CO18OC2H5的水解产物是CH3COOH和C2H518OH,因此选项C不正确;两个氨基酸分子(可以相同,也可以不同),在酸或碱的存在下加热,通过一分子的氨基与另一分子的羧基间脱去一分子水,缩合形成含有肽键 的化合物,成为成肽反应。因此甘氨酸和丙氨酸混合缩合是既可以是自身缩合(共有2种),也可是甘氨酸提供氨基,丙氨酸提供羧基,或者甘氨酸提供羧基,丙氨酸提供氨基,所以一共有4种二肽,即选项D正确。

答案:C

4.(2011福建高考8)下列关于有机化合物的认识不正确的是

A.油脂在空气中完全燃烧转化为水和二氧化碳

B.蔗糖、麦芽糖的分子式都是C12H22O11,二者互为同分异构体

C.在水溶液里,乙酸分子中的—CH3可以电离出H+

D.在浓硫酸存在下,苯与浓硝酸共热生成硝基苯的反应属于取代反应

解析:在水溶液里,只有乙酸分子中的—COOH才可以电离出H+,电离方程式是

CH3COOH H++CH3COO-。这题是必修2有机内容,考查角度简单明了,不为难学生。

答案:C

5. (2011广东高考7)下列说法正确的是

A.纤维素和淀粉遇碘水均显蓝色

B.蛋白质、乙酸和葡萄糖均属电解质

C.溴乙烷与NaOH乙醇溶液共热生成乙烯[

D.乙酸乙酯和食用植物油均可水解生成乙醇

解析:本题考察常见有机物的结构和性质。只有淀粉遇碘水才显蓝色,A错误;在水溶液里或熔融状态下能够导电的化合物叫做电解质。蛋白质属于高分子化合物,是混合物,不是电解质,而葡萄糖属于非电解质,只有乙酸才属于电解质,B不正确;溴乙烷属于卤代烃,在NaOH乙醇溶液热发生消去反应,生成乙烯,C正确;食用植物油属于油脂,油脂是高级脂肪酸与甘油形成的酯,水解生成的醇是丙三醇即甘油,D不正确。

答案:C

6.(2011山东高考11)下列与有机物结构、性质相关的叙述错误的是

A.乙酸分子中含有羧基,可与NaHCO3溶液反应生成CO2

B.蛋白质和油脂都属于高分子化合物,一定条件下都能水解

C.甲烷和氯气反应生成一氯甲烷,与苯和硝酸反应生成硝基苯的反应类型相同

D.苯 不能使溴的四氯化碳溶液褪色,说明苯分子中没有与乙烯分子中类似的碳碳双键

解析:乙酸属于一元羧酸,酸性强于碳酸的,所以可与NaHCO3溶液反应生成CO2,A正确;油脂是高级脂肪酸的甘油酯,属于酯类,但不属于高分子化合物,选项B不正确;甲烷和氯气反应生成一氯甲烷,以及苯和硝酸反应生成硝基苯的反应都属于取代反应,C正确;只有分子中含有碳碳双键就可以与溴的四氯化碳溶液发生加成反应,从而使之褪色,D正确。

答案:B

7.(2011重庆)NM-3和D-58是正处于临床试验阶段的小分子抗癌药物,结构如下:

关于NM-3和D-58的叙述,错误的是

A.都能与NaOH溶液反应,原因不完全相同

B.都能与溴水反应,原因不完全相同

C.都不能发生消去反应,原因相同

D.遇FeCl3溶液都显色,原因相同

解析:本题考察有机物的结构、官能团的判断和性质。由结构简式可以看出NM-3中含有酯基、酚羟基、羧基、碳碳双键和醚键,而D-58含有酚羟基、羰基、醇羟基和醚键。酯基、酚羟基和羧基均与NaOH溶液反应,但前者属于水解反应,后两者属于中和反应,A正确;酚羟基和碳碳双键均与溴水反应,前者属于取代反应,后者属于加成反应,B正确;NM-3中没有醇羟基不能发生消去反应,D-58中含有醇羟基,但醇羟基的邻位碳上没有氢原子,故不能发生消去反应,属于选项C不正确;二者都含有酚羟基遇FeCl3溶液都显紫色,D正确。

答案:C

8.(2011新课标全国)分子式为C5H11Cl的同分异构体共有(不考虑立体异构)

A.6种 B.7种 C. 8种 D.9种

解析:C5H11Cl属于氯代烃,若主链有5个碳原子,则氯原子有3种位置,即1-氯戊烷、2-氯戊烷和3-氯戊烷;若主链有4个碳原子,此时甲基只能在2号碳原子上,而氯原子有4种位置,分别为2-甲基-1-氯丁烷、2-甲基-2-氯丁烷、3-甲基-2-氯丁烷和3-甲基-1-氯丁烷;若主链有3个碳原子,此时该烷烃有4个相同的甲基,因此氯原子只能有一种位置,即2,3-二甲基-1-丙烷。综上所叙分子式为C5H11Cl的同分异构体共有8种。

答案:C

9. (2011新课标全国)下列反应中,属于取代反应的是

①CH3CH=CH2+Br2 CH3CHBrCH2Br

②CH3CH2OH CH2=CH2+H2O

③CH3COOH+CH3CH2OH CH3COOCH2CH3+H2O

④C6H6+HNO3 C6H5NO2+H2O

A. ①② B.③④ C.①③ D.②④

解析:①属于烯烃的加成反应;②属于乙醇的消去反应;③属于酯化反应,而酯化反应属于取代反应;④属于苯的硝化反应即为取代反应,所以选项B正确。

答案:B

10.(2011海南)下列化合物中,在常温常压下以液态形式存在的是

A. 甲醇 B. 乙炔 C. 丙烯 D. 丁烷

[答案]A

命题立意:考查学生的化学基本素质,对有机化合物物理性质的掌握程度

解析:本题非常简单,属于识记类考查,其中甲醇为液态为通识性的知识。

思维拓展这类题自去年出现,代表着一个新的出题方向,即考查学生化学基本的素质,这属于新课程隐性能力的考查。去年考查的是有机物的密度和水溶性,今年考的是物质状态。

11.(2011海南)下列化合物的分子中,所有原子都处于同一平面的有

A. 乙烷 B. 甲苯 C. 氟苯 D. 四氯乙烯

[答案]CD

命题立意:考查有机分子的结构。

解析:A选项没有常说的平面结构,B选项中甲基有四面体空间结构,C选项氟原子代替苯中1个氢原子的位置仍共平面,D选项氯原子代替乙烯中氢原子的位置仍共平面。

技巧点拨共平面的题是近年来常考点,这类题切入点是平面型结构。有平面型结构的分子在中学主要有乙烯、1,3-丁二烯、苯三种,其中乙烯平面有6个原子共平面, 1,3-丁二烯型的是10个原子共平面,苯平面有12个原子共平面。这些分子结构中的氢原子位置即使被其他原子替代,替代的原子仍共平面。

12.(2011全国II卷7)下列叙述错误的是

A.用金属钠可区分乙醇和

B.用高锰酸钾酸性溶液可区分乙烷和3-乙烯

C.用水可区分苯和溴苯

D.用新制的银氨溶液可区分甲酸甲酯和乙醛

解析:乙醇可与金属钠反应生成氢气,而不可以;3-乙烯属于烯烃可以使高锰酸钾酸性溶液褪色;苯和溴苯均不溶于水,但苯但密度小于水的,而溴苯的密度大于水的;甲酸甲酯和乙醛均含有醛基,都能发生银镜反应。

答案:D

13.(2011上海)甲醛与亚硫酸氢钠的反应方程式为HCHO+NaHSO3 HO-CH2-SO3Na,反应产物俗称“吊白块”。关于“吊白块”的叙述正确的是

A.易溶于水,可用于食品加工 B.易溶于水,工业上用作防腐剂

C.难溶于水,不能用于食品加工 D.难溶于水,可以用作防腐剂

解析:根据有机物中含有的官能团可以判断,该物质易溶于水,但不能用于食品加工。

答案:B

14.(2011上海)某物质的结构为 ,关于该物质的叙述正确的是

A.一定条件下与氢气反应可以生成硬脂酸甘油酯

B.一定条件下与氢气反应可以生成软脂酸甘油酯

C.与氢氧化钠溶液混合加热能得到肥皂的主要成分

D.与其互为同分异构且完全水解后产物相同的油脂有三种

解析:从其结构简式可以看出,该物质属于油脂,且相应的高级脂肪酸各部相同,因此选项A、B均不正确,而选项C正确;与其互为同分异构且完全水解后产物相同的油脂有两种。

答案:C

15.(2011上海)β—月桂烯的结构如下图所示,一分子该物质与两分子溴发生加成反应的产物(只考虑位置异构)理论上最多有

A.2种 B.3种 C.4种 D.6种

解析:注意联系1,3-丁二稀的加成反应。

答案:C

16.(2011四川)25℃和101kPa时,乙烷、乙炔和丙烯组成的混合烃32mL,与过量氧气混合并完全燃烧,除去水蒸气,恢复到原来的温度和压强,气体总体积缩小了72mL,原混合径中乙炔的体积分数为

A. 12.5% B. 25% C. 50% D. 75%

解析: 4CnHm+(4n+m)O2 4nCO2+2mH2O △V↓

4 4n+m 4n 4+m

32 72

所以m=5,即氢原子的平均值是5,由于乙烷和丙烯均含有6个氢原子,所以利用十字交叉法可计算出乙炔的体积分数: 。

答案:B

17.(2011江苏高考17,15分)敌草胺是一种除草剂。它的合成路线如下:

回答下列问题:

(1)在空气中久置,A由无色转变为棕色,其原因是 。

(2)C分子中有2个含氧官能团,分别为 和 (填官能团名称)。

(3)写出同时满足下列条件的C的一种同分异构体的结构简式: 。

①能与金属钠反应放出H2;②是萘( )的衍生物,且取代基都在同一个苯环上;③可发生水解反应,其中一种水解产物能发生银镜反应,另一种水解产物分子中有5种不同化学环境的氢。

(4)若C不经提纯,产物敌草胺中将混有少量副产物E(分子式为C23H18O3),E是一种酯。

E的结构简式为 。

(5)已知: ,写出以苯酚和乙醇为原料制备 的合成路线流程图(无机试剂任用)。合成路线流程图示例如下:

解析:本题是一道基础有机合成题,仅将敌草胺的合成过程列出,着力考查阅读有机合成方案、利用题设信息、解决实际问题的能力,也考查了学生对信息接受和处理的敏锐程度、思维的整体性和对有机合成的综合分析能力。本题涉及到有机物性质、有机官能团、同分异构体推理和书写,合成路线流程图设计与表达,重点考查学生思维的敏捷性和灵活性,对学生的信息获取和加工能力提出较高要求。

由A的结构简式可看出,A中含有酚羟基,易被空气中的氧气氧化;能与金属钠反应放出H2说明含有羟基,可发生水解反应,其中一种水解产物能发生银镜反应,说明是甲酸某酯。另一种水解产物分子中有5种不同化学环境的氢,说明水解产物苯环支链一定是对称的,且支链是一样的。由C和E的分子式可知,E是由A和C反应生成的。

备考提示解答有机推断题时,我们应首先要认真审题,分析题意,从中分离出已知条件和推断内容,弄清被推断物和其他有机物的关系,以特征点作为解题突破口,结合信息和相关知识进行推理,排除干扰,作出正确推断。一般可取的方法有:顺推法(以有机物结构、性质和实验现象为主线,用正向思维,得出正确结论)、逆推法(以有机物结构、性质和实验现象为主线,用逆向思维,得出正确结论)、多法结合推断(综合应用顺推法和逆推法)等。关注官能团种类的改变,搞清反应机理。

答案:(1)A被空气中的O2氧化

(2)羟基 醚键

18.(2011浙江高考29,14分)白黎芦醇(结构简式: )属二苯乙烯类多酚化合物,具有抗氧化、抗癌和预防心血管疾病的作用。某课题组提出了如下合成路线:

已知: 。

根据以上信息回答下列问题:

(1)白黎芦醇的分子式是_________________________。

(2)C→D的反应类型是____________;E→F的反应类型是____________。

(3)化合物A不与FeCl3溶液发生显色反应,能与NaHCO3反应放出CO2,推测其核磁共振谱(1H -NMR)中显示有_____种不同化学环境的氢原子,其个数比为______________。

(4)写出A→B反应的化学方程式:____________________________________________。

(5)写出结构简式:D________________、E___________________。

(6)化合物 有多种同分异构体,写出符合下列条件的所有同分异构体的结构简式:_______________________________________________________________。

①能发生银镜反应;②含苯环且苯环上只有两种不同化学环境的氢原子。

解析;先确定A的不饱和度为5,对照白黎芦醇的结构,确定含苯环,间三位,无酚羟基,有羧基。

A: ;B: ;C: ;(应用信息②)

D: ;E: (应用信息①)

F: 。

(1)熟悉键线式。

(2)判断反应类型。

(3)了解有机化学研究方法,特别是H-NMR的分析。

(4)酯化反应注意细节,如 和H2O不能漏掉。

(5)分析推断合成流程,正确书写结构简式。

(6)较简单的同分异构体问题,主要分析官能团类别和位置异构。

答案:(1)C14H12O3。

(2)取代反应;消去反应。

(3)4; 1︰1︰2︰6。

(4)

(5) ; 。

(6) ; ; 。

19.(2011安徽高考26,17分)

室安卡因(G)是一种抗心率天常药物,可由下列路线合成;

(1)已知A是 的单体,则A中含有的官能团是 (写名称)。B的结构简式是 。

(2)C的名称(系统命名)是 ,C与足量NaOH醇溶液共热时反应的化学方程式是

(3)X是E的同分异构体,X分子中含有苯环,且苯环上一氯代物只有两种,则X所有可能的结构简式有 、 、 、 。

(4)F→G的反应类型是 。

(5)下列关于室安卡因(G)的说法正确的是 。

a.能发生加成反应 b.能使酸性高锰酸钾溶液褪色

c.能与盐酸反应生成盐 d..属于氨基酸

解析:(1)因为A是高聚物 的单体,所以A的结构简式是CH2=CHCOOH,因此官能团是羧基和碳碳双键;CH2=CHCOOH和氢气加成得到丙酸CH3CH2COOH;

(2)由C的结构简式可知C的名称是2-溴丙酸;C中含有两种官能团分别是溴原子和羧基,所以C与足量NaOH醇溶液共热时既发生卤代烃的消去反应,又发生羧基的中和反应,因此反应的化学方程式是

(3)因为X中苯环上一氯代物只有两种,所以若苯环上有2个取代基,则只能是对位的,这2个取代基分别是乙基和氨基或者是甲基和-CH2NH2;若有3个取代基,则只能是2个甲基和1个氨基,且是1、3、5位的,因此分别为:

(4)F→G的反应根据反应前后有机物结构式的的变化可知溴原子被氨基取代,故是取代反应;

(5)由室安卡因的结构特点可知该化合物中含有苯环、肽键和氨基,且苯环上含有甲基,所以可以加成也可以被酸性高锰酸钾氧化;肽键可以水解;氨基显碱性可以和盐酸反应生成盐,所以选项abc都正确。由于分子中不含羧基,因此不属于氨基酸,d不正确。

答案:(1)碳碳双键和羧基 CH3CH2COOH

(2)2-溴丙酸

(3)

(4)取代反应

(5)abc

20.(2011北京高考28,17分)

常用作风信子等香精的定香剂D以及可用作安全玻璃夹层的高分子化合物PVB的合成路线如下:

已知:

(1)A的核磁共振氢谱有两种峰,A的名称是

(2)A与 合成B的化学方程式是

(3)C为反式结构,由B还原得到。C的结构式是

(4)E能使Br2的CCl4溶液褪色,N由A经反应①~③合成。

a. ①的化学试剂和条件是 。

b. ②的反应类型是 。

c. ③的化学方程式是 。

(5)PVAC由一种单体经加聚反应得到,该单体的结果简式是 。

(6)碱性条件下,PVAc完全水解的化学方程式是 。

解析:(1)A的分子式是C2H4O,且A的核磁共振氢谱有两种峰,因此A只能是乙醛;

(2)根据题中的信息Ⅰ可写出该反应的方程式

(3)C为反式结构,说明C中含有碳碳双键。又因为C由B还原得到,B中含有醛基,因此C中含有羟基,故C的结构简式是 ;

(4)根据PVB的结构简式并结合信息Ⅱ可推出N的结构简式是CH3CH2CH2CHO,又因为E能使Br2的CCl4溶液褪色,所以E是2分子乙醛在氢氧化钠溶液中并加热的条件下生成的,即E的结构简式是CH3CH=CHCHO,然后E通过氢气加成得到F,所以F的结构简式是CH3CH2CH2CH2OH。F经过催化氧化得到N,方程式为 ;

(5)由C和D的结构简式可知M是乙酸,由PVB和N的结构简式可知PVA的结构简式是聚乙烯醇,因此PVAC的单体是乙酸乙烯酯,结构简式是CH3COOCH=CH2,所以碱性条件下,PVAc完全水解的化学方程式是 。

答案:(1)乙醛

(2)

(3)

(4)a稀氢氧化钠 加热

b加成(还原)反应

c

(5)CH3COOCH=CH2

21. (2011福建高考31,13分)

透明聚酯玻璃钢可用于制造导弹的雷达罩和宇航员使用的氧气瓶。制备它的一种配方中含有下列四种物质:

(甲)   (乙)    (丙)     (丁)

填写下列空白:

(1)甲中不含氧原子的官能团是____________;下列试剂能与甲反应而褪色的是___________(填标号)

a. Br2/CCl4溶液 b.石蕊溶液 c.酸性KMnO4溶液

(2)甲的同分异构体有多种,写出其中一种不含甲基的羧酸的结构简式:_______

(3)淀粉通过下列转化可以得到乙(其中A—D均为有机物):

A的分子式是___________,试剂X可以是___________。

(4)已知:

利用上述信息,以苯、乙烯、氯化氢为原料经三步反应合成丙,其中属于取代反应的化学方程式是 。

(5)化合物丁仅含碳、氢、氧三种元素,相对分子质量为110。丁与FeCl3溶液作用显现特征颜色,且丁分子中烃基上的一氯取代物只有一种。则丁的结构简式为 。

解析:(1)由甲的结构简式可得出含有的官能团是碳碳双键和酯基;有碳碳双键所以可以使溴的四氯化碳或酸性高锰酸钾溶液褪色;

(2)由于不能含有甲基,所以碳碳双键只能在末端,故结构简式是CH2=CH-CH2-CH2-COOH;

(3)由框图转化不难看出,淀粉水解得到葡萄糖,葡萄糖在酶的作用下分解生成乙醇。乙醇通过消去反应得到乙烯,乙烯加成得到1,2-二卤乙烷,最后通过水解即得到乙二醇。

(4)由已知信息可知,要生成苯乙烯,就需要用乙苯脱去氢,而要生成乙苯则需要苯和氯乙烷反应,所以有关的方程式是:①CH2=CH2+HCl CH3CH2Cl;②

;③ 。

(5)丁与FeCl3溶液作用显现特征颜色,说明丁中含有苯环和酚羟基。苯酚的相对分子质量为94,110-94=16,因此还含有一个氧原子,故是二元酚。又因为丁分子中烃基上的一氯取代物只有一种,所以只能是对位的,结构简式是 。

答案:(1)碳碳双键(或 );ac

(2)CH2=CH-CH2-CH2-COOH

(3)C6H12O6;Br2/CCl4(或其它合理答案)

(4) +CH3CH2Cl +HCl

(5)

22.(2011广东高考30,16分)直接生成碳-碳键的反应是实现高效、绿色有机合成的重要途径。交叉脱氢偶联反应是近年备受关注的一类直接生成碳-碳键的新反应。例如:

化合物Ⅰ可由以下合成路线获得:

(1)化合物Ⅰ的分子式为____________,其完全水解的化学方程式为_____________(注明条件)。

(2)化合物Ⅱ与足量浓氢溴酸反应的化学方程式为_____________(注明条件)。

(3)化合物Ⅲ没有酸性,其结构简式为____________;Ⅲ的一种同分异构体Ⅴ能与饱和NaHCO3溶液反应放出CO2,化合物Ⅴ的结构简式为___________________。

(4)反应①中1个脱氢剂Ⅵ(结构简式如下)分子获得2个氢原子后,转变成1个芳香族化合物分子,该芳香族化合物分子的结构简式为_________________。

(5)1分子 与1分子 在一定条件下可发生类似反应①的反应,其产物分子的结构简式为____________;1mol该产物最多可与______molH2发生加成反应。

解析:本题考察有机物的合成、有机物的结构和性质、有机反应的判断和书写以及同分异构体的判断和书写。

(1)依据碳原子的四价理论和化合物Ⅰ的结构简式可写出其分子式为C5H8O4;该分子中含有2个酯基,可以发生水解反应,要想完全水解,只有在解析条件下才实现,所以其方程式为

H3COOCCH2COOCH3+2NaOH 2CH3OH+NaOOCCH2COONa。

(2)由化合物Ⅰ的合成路线可知,Ⅳ是丙二酸,结构简式是HOOCCH2COOH,因此Ⅲ是丙二醛,其结构简式是HOCCH2CHO,所以化合物Ⅱ的结构简式是HOCH2CH2CH2OH。与浓氢溴酸反应方程式是

HOCH2CH2CH2OH+2HBr CH2BrCH2CH2Br+2H2O。

(3)Ⅴ能与饱和NaHCO3溶液反应放出CO2,说明分子中含有羧基,根据Ⅲ的结构简式HOCCH2CHO可知化合物Ⅴ的结构简式为CH2=CHCOOH。

(4)芳香族化合物必需含有苯环,由脱氢剂Ⅵ的结构简式可以写出该化合物的结构简式是

(5)反应①的特点是2分子有机物各脱去一个氢原子形成一条新的C-C键,因此1分子

与1分子 在一定条件下发生脱氢反应的产物是

。该化合物中含有2个苯环、1个碳碳三键,所以1mol该产物最多可与8molH2发生加成反应。

答案:(1)C5H8O4;H3COOCCH2COOCH3+2NaOH 2CH3OH+NaOOCCH2COONa。

(2)HOCH2CH2CH2OH+2HBr CH2BrCH2CH2Br+2H2O。

(3)HOCCH2CHO;CH2=CHCOOH。

(4) 。

(5) ;8。

23.(2011山东高考33,8分)

美国化学家R.F.Heck因发现如下Heck反应而获得2010年诺贝尔化学奖。

(X为卤原子,R为取代基)

经由Heck反应合成M(一种防晒剂)的路线如下:

回答下列问题:

(1)M可发生的反应类型是______________。

a.取代反应 b.酯化反应 c.缩聚反应 d.加成反应

(2)C与浓H2SO4共热生成F,F能使酸性KMnO4溶液褪色,F的结构简式是__________。

D在一定条件下反应生成高分子化合物G,G的结构简式是__________。

(3)在A → B的反应中,检验A是否反应完全的试剂是_______________。

(4)E的一种同分异构体K符合下列条件:苯环上有两个取代基且苯环上只有两种不同化学环境的氢,与FeCl3溶液作用显紫色。K与过量NaOH溶液共热,发生反应的方程式为__________。

解析:(1)M中含有的官能团有醚键、碳碳双键和酯基,同时还含有苯环,碳碳双键可以发生加成反应和加聚反应但不能发生缩聚反应,酯基水解和苯环可以发生取代反应,没有羟基和羧基不能发生酯化反应。所以正确但选项是a和d。

(2)依据题中所给信息和M的结构特点可以推出D和E的结构简式分别为CH2=CHCOOCH2CH2CH(CH3)2、 ;由合成路线可以得出B和C是通过酯化反应得到的,又因为C与浓H2SO4共热生成F,F能使酸性KMnO4溶液褪色,所以C是醇、B是不饱和羧酸,结构简式分别是HOCH2CH2CH(CH3)2、CH2=CHCOOH。C通过消去得到F,所以F的结构简式是(CH3)2CHCH=CH2;D中含有碳碳双键可以发生加聚反应生成高分子化合物G,G的结构简式为 ;

(3)A→B属于丙烯醛(CH2=CHCHO)的氧化反应,因为A中含有醛基,所以要检验A是否反应完全的试剂可以是新制的氢氧化铜悬浊液或新制的银氨溶液。

(4)因为K与FeCl3溶液作用显紫色,说明K中含有酚羟基,又因为K中苯环上有两个取代基且苯环上只有两种不同化学环境的氢,这说明两个取代基是对位的,因此K的结构简式为 ,,所以K与过量NaOH溶液共热,发生反应的方程式为:

答案:(1)a、d

(2)(CH3)2CHCH=CH2;

(3)新制的氢氧化铜悬浊液或新制的银氨溶液

(4)

石灰岩简介及详细资料

重庆渝北中央公园这个地方,经常关注音乐就会知道,重庆的草莓音乐节,星空音乐节最近三年内都是在这里举办的。大片的草坪,宽阔的土地,让这里成为周围居民闲时休息的好地方。 门票 :免费 地址 :渝北区同茂大道和节庆大道 路线 : 1、机场高速—回兴下道—宝桐路—工业园区—渝北体育馆—中央公园 2、机场高速—绿梦广场下道—三支路—二支路—民俗文化村左转—四号桥洞子—第二个红路灯右转—中央公园 这里空气清新,绿草如茵,有阳光大草坪可以和娃儿追逐嬉戏,可以带上野餐垫,摆点小零食,一家其乐融融,想想就很美好。 有专门给小孩玩沙的地方,还提供玩具,有自行车可以骑,有篮球场可以跳跃,可以坐船游湖,星期六晚上8点还有音乐喷泉可以看。 公园不允许私家车开进去,公园东、西、南三个方向修建了2800个地下停车位,基本不愁停车问题。 重庆最大的公园。此公园位于渝北区,是西南地区最大的开放式城市中心公园,西距在建的悦来重庆国际会展城3公里,东距江北国际机场5公里,总投资约46亿元。公园绿树成荫,鸟语花香,是休闲的好去处。可惜现在公园没有卖吃的地方,而且离市区稍远,只能游玩,骑自行车,放风筝这些活动。希望随着悦来会展中心今年3月28日开幕,以及将来地铁4号线的开通,给这里带来更多的人气。 直接轻轨3号线到轨道碧津站,出站后不过马路,左行约30米有一车站,坐685路公交直达中央公园,在公园的任一门下车都可以。票价一元,行车1小时(车要经过两路的老街,路窄可能会小堵)。(注意公交7:30收班)。如果是自驾车,可以通过两路城区,然后经兰馨大道转往3条贯穿中央公园的东西大道(同茂、兰桂、腾芳)前往。 看了这么多适合带孩子出去玩的地方,是不是早就已经心动了呢?明天就出发吧,趁着好天气,给孩子们一个难忘的童年时光! 交通 : 1、乘坐公交619路,到达终点站后,步行前往中央公园; 2、乘坐轨道交通3号线到碧津站后,换乘公交685路(阿兴记大饭店旁),或乘坐轨道交通6号线至悦来站,换乘公交685路(国博汽车站); 3、乘坐公交685路,从渝北区两路城南到重庆中央公园。(注:685路在轨道3号线碧津站与轨道交通接驳。) 4、若驾车前往,可通过渝北两路城区,进入空港西区后,经兰馨大道转往同茂大道(兰桂、腾芳)前往

松香拔鸭毛?

岩石分类 石灰岩

石灰岩主要是在浅海的环境下形成的。石灰岩按成因可划分为粒屑石灰岩(流水搬运、沉积形成)、生物骨架石灰岩和化学、生物化学石灰岩。按结构构造可细分为竹叶状灰岩、鲕粒状灰岩、豹皮灰岩、团块状灰岩等。石灰岩的主要化学成分是CaCO3易溶蚀,故在石灰岩地区多形成石林和溶洞,称为喀斯特地形。

石灰岩是烧制石灰和水泥的主要原料,是炼铁和炼钢的熔剂。

岩石结构

石灰岩结构较为复杂,有碎屑结构和晶粒结构两种。碎屑结构多由颗粒、泥晶基质和亮晶胶结物构成。颗粒又称粒屑,主要有内碎屑、生物碎屑和鲕粒等,泥晶基质是由碳酸钙细屑或晶体组成的灰泥,质点大多小于0.05毫米,亮晶胶结物是充填于岩石颗粒之间孔隙中的化学沉淀物,是直径大于0.01毫米的方解石晶体颗粒;晶粒结构是由化学及生物化学作用沉淀而成的晶体颗粒。

结构分类

灰泥含量/%

颗粒含量/%

颗粒

品粒

生物格架

内碎屑

生物

鲕粒

团块

粪粒

Ⅰ颗粒灰泥石灰岩

Ⅰ1颗粒石灰岩

10

25

50

75

90

90

75

50

25

10

内碎屑石灰岩

生物石灰岩

鲕粒石灰岩

团块石灰岩

粪粒石灰岩

Ⅱ结晶石灰岩

Ⅰ2含灰泥颗粒

石灰岩

含灰泥内碎屑石灰岩

含灰泥生物石灰岩

含灰泥鲕粒石灰岩

含灰泥团块石灰岩

含灰泥粪粒石灰岩

Ⅰ3灰泥质颗粒石灰岩

灰泥质内碎屑石灰岩

灰泥质生物石灰岩

灰泥质鲕粒石灰岩

灰泥质团块石灰岩

灰泥质粪粒石灰岩

Ⅰ4颗粒质灰泥石灰岩

内碎屑质灰泥石灰岩

生物质灰泥石灰岩

鲕粒质灰泥石灰岩

团块质灰泥石灰岩

粪粒质泥质石灰岩

Ⅰ5含颗粒灰泥石灰岩

含内碎屑灰泥石灰岩

含生物灰泥石灰岩

含鲕粒灰泥石灰岩

含鲕粒灰泥石灰岩

含粪粒泥质石灰岩

Ⅰ6灰泥石灰岩

灰泥石灰岩

(据华东石油学院)

岩石分布

由生物化学作用生成的灰岩,常含有丰富的有机物残骸。石灰岩中一般都含有一些白云石和黏土矿物,当黏土矿物含量达25%~50%时,称为泥质岩。白云石含量达25%~50%时,称为白云质灰岩。石灰岩分布相当广泛,岩性均一,易于开加工,是一种用途很广的建筑材料。

特别是在华北及东北南部,因中奥陶世海侵达到最 *** ,普遍沉积了层厚而质纯的石灰岩,为具有工业价值的水泥原料及治金工业原料。

形成过程

石灰岩的主要成分是碳酸钙,可以溶解在含有二氧化碳的水中。一般情况下一升含二氧化碳的水,可溶解大约50毫克的碳酸钙。

石灰岩

湖海中所沉积的碳酸钙,在失去水分以后,紧压胶结起来而形成的岩石,称为石灰岩。石灰岩的矿物成分主要是方解石(占50%以上)还有一些粘土、粉砂等杂质。绝大多数石灰岩的形成与生物作用有关,生物遗体堆积而成的石灰岩有珊瑚石灰岩、介壳石灰岩,藻类石灰岩等,总称生物石灰岩。由水溶液中的碳酸钙(CaCO3)经化学沉淀而成的石灰岩,称为化学石灰岩。如普通石灰岩、矽质石灰岩等。

岩石类型

石灰岩是地壳中分布最广的矿产之一。按其沉积地区,石灰岩又分为海相沉积和陆相沉积,以前者居多;按其成因,石灰岩可分为生物沉积、化学沉积和次生三种类型;按矿石中所含成分不同,石灰岩可分为矽质石灰岩、粘土质石灰岩和白云质石灰岩三种。分布情况:中国石灰岩矿产十分丰富,作为水泥、溶剂和化工用的石灰岩矿床已达八百余处。产地遍布全国,各省、市自治区均可在工业区附近就地取材。

石灰岩

石灰岩矿产在每个地质时代都有沉积,各个地质构造发展阶段都有分布,但质量好,规模大的石灰岩矿床往往赋存于一定的层位中。以水泥用石灰岩为例,东北、华北地区的中奥陶系马家沟组石灰岩是极其重要的层位,中南、华东、西南地区多用石炭、二叠、三叠系石灰岩,西北、西藏地区一般多用志留、泥盆系石灰岩,华东、西北及长江中下游的奥陶纪石灰岩也是水泥原料的重要层位。

矿石性质

1. 矿石的矿物组成石灰岩的矿物成分主要为方解石、伴有白云石、菱镁矿和其他碳酸盐矿物,还混有其他一些杂质。其中的镁呈白灰石及菱镁矿出现,氧化矽为游离状的石英,石髓及蛋白石分布在岩石内,氧化铝同氧化矽化合成矽酸铝(粘土、长石、云母);铁的化合物呈碳酸盐(菱镁矿)、硫铁矿(黄铁矿)、游离的氧化物(磁铁矿、赤铁矿)及氢氧化物(含水针铁矿)存在;此外还有海绿石,个别类型的石灰岩中还有煤、地沥青等有机质和石膏、硬石膏等硫酸盐,以及磷和钙的化合物,碱金属化合物以及锶、钡、锰、钛、氟等化合物,但含量很低。

石灰岩

2、石灰岩的性质

石灰岩具有良好的加工性、磨光性和很好的胶结性能,不溶于水,易溶于饱和硫酸,能和各种强酸发生反应并形成相应的钙盐,同时放出CO2。石灰岩煅烧至900℃以上(一般为1000~1300℃)时分解转化为石灰(CaO),放出CO2。生石灰遇水潮解,立即形成熟石灰[Ca(OH)2],熟石灰溶于水后可调浆,在空气中易硬化。

工艺特性

石灰具有导热性、坚固性、吸水性、不透气性、隔音性、磨光性、很好的胶结性能以及可加工性等优良的性能,既可直接利用原矿,也可深加工套用。

主要用途

石灰岩在冶金、建材、化工、轻工、建筑、农业及其它特殊工业部门都是重要的工业原料。随着钢铁和水泥工业的发展,石灰岩的重要性必将进一步增强。

质量标准

对石灰岩的质量要求,视用途不同而异。一般来说,冶金、化学工业和其它的特殊工业部门对石灰岩纯度的要求比建筑工业和农业高,我国除冶金工业用石灰岩制定了中华人民共和国专业标准ZBD60001-85外,其它行业均未制定国家标准或专业标准,而由各套用部门自行制定有关标准。建材工业用石灰岩产品质量要求

石灰岩

(1)水泥工业:用于水泥生产的石灰质原料,质量要求列于表7。对非晶质石灰岩,其粒度要求为30~80mm。

(2) 玻璃工业:一般来说,根据玻璃质量要求不同而选用CaO含量不同的石灰岩,但要求所选用的石灰岩为非晶质且成份稳定。

综合利用

综合利用技术方法及工艺流程我国石灰岩的特点是储量大,质量较好。因而我国较大的石灰岩矿山都用洗矿-破碎-分级方法处理石灰岩矿石,以除去地表泥土、砂石、粘性泥团对砂石的污染。对于品位较低的石灰岩或矿石性质差异大的石灰岩,国外有些国家用浮选法或光电选矿方法。如用浮选法进行石灰岩和石英与铁的分离等;用浮选法或光电选矿法进行石灰岩和白云石与菱镁矿的分离等。

开发现状

开发利用现状、存在问题及解决对策

石灰岩

石灰石用途很广,是国民经济各部门以及人民生活中必不可少的原料。主要用于:(1)在建筑工业中用来生产水泥和烧制石灰;(2)冶金工业用作熔剂;(3)化学工业中用来制碱、漂及肥料等;(4)食品工业中用作澄清剂;(5)农业中用来改良土壤;(6)在塑胶工业中用作填料;(7)在涂料工业中广泛用于做各种建筑涂料;(8)在造纸工业中用作碱性填料;(9)在橡胶工业中用作橡胶的基本填料;(10)在环保工业中用作吸附剂。

重质碳酸钙是以天然方解石、石灰石和白垩为原料,以机械粉碎达到一定细度的产品,其生产方法有干法和湿法两种,国外已获得重大进展的湿法磨粉工艺在我国仍是空白;在用石灰石生产轻质碳酸钙的工艺中,在轻钙产品的粒径与晶形控制方面与国外相比还有较大差距。为此,今后必须进一步发展石灰石的深加工工业,拓宽套用领域,加强综合利用,使产品增值,提高经济效益。

发展趋势

石灰石是冶金、建材、化工、轻工、农业等部门的重要工业原料。随着钢铁和水泥工业的发展,对石灰石的需求将进一步增加。水泥产量庞大,即每年需开用于水泥制品的石灰石要千亿吨以上。预测到2020年,全国水泥产量将达到3亿吨,这将需要开更多的石灰石作原料。此外,冶金、化工等方面对石灰石的需求也很大。因此,石灰石工业的生产发展前景广阔,为了使石灰石产品具有更大的增值效益,开拓石灰石深加工产品也是今后一个发展方向。

石凳 开发生产 石灰

石灰岩煅烧至温度1000~1300°C时,可将CaCO3中的CO2排出,制成生石灰。生石灰为白色固体,耐火难溶,遇水放热吸水生成熟石灰,石灰水饱和溶液呈碱性,易与空气中CO2反应生成CaCO3沉淀。商业上分为高钙石灰(CaO≥90%),钙质石灰(CaO≥85%),镁钙石灰(MgO≥10%)和高镁石灰(MgO≥25%)四类。

熟石灰

即氢氧化钙(消石灰)

a.分子式:Ca(OH)2

石佛

b.相对分子质量:74.08

c.性质:细腻的白色粉末。密度 2.24g/cm。加热至580°C失水成为氧化钙,在空气中吸收CO2而变为碳酸钙。溶于酸、甘油、难溶于水,不溶于醇。

d.用途:用于制药、橡胶、石油工业添加剂和软化水用等。用于石油工业添加在润滑油中,可防止结焦、油泥沉积、中和防腐。

e.主要原料及规格:石灰石(CaCO3)≥98%

f.制法及工艺流程:石灰消化法是将石灰石在煅烧窑煅烧成氧化钙后,以精选、加水消化,再经净化、干燥及过筛,得氢氧化钙产品。其反应式如下:

CaCO3=CaO+CO2(高温) CaO+H2O=Ca(OH)2

工艺流程如下:

石灰石、焦炭→焙烧→精选→加水消化→沉淀→分离→干燥→过筛→包装→氢氧化钙

氧化钙

a.分子式:CaO

b.相对分子质量:56.08

c.性质:白色无定形粉未。密度3.25~3.38g/cm。熔点2580°C。沸点2850°C。在空气中放置,吸收空气中的水和二氧化碳,生成氢氧化钙和碳酸钙。氧化钙与水作用(称为"消化")生成氢氧化钙并放出热量(生成物呈强碱性)。溶于酸、不溶于醇。

d.用途:氧化钙用于钢铁、农药、医药、非铁金属、肥料、制革、制氢氧化钙,实验室氨气的干燥和醇脱水等。

e.主要原料及规格:盐酸(HCl)35%;碳酸钙(CaCO3)98%。

f.制法及工艺流程:碳酸钙煅烧法是先将碳酸钙与盐酸反应生成氯化钙,用氨水中和、过滤、加入碳酸氢钠,反应生成碳酸钙沉淀,经脱水、干燥煅烧而得。其反应式如下:CaCO3+2HCl→CaCl2+CO2+H2O

CaCl2+2NH4OH→Ca(OH)2+2NH4Cl

Ca(OH)2+NaHCO3→CaCO3+NaOH+H2O

CaCO3→CaO+CO2

工艺流程如下,

碳酸钙加盐酸→酸解→加氨水中和→静置沉淀→过滤→加碳酸氢钠反应→碳酸钙脱水→干燥→煅烧→筛选→包装→氧化钙

轻质碳酸钙

a.分子式:CaCO3

b.相对分子质量:100.08

c.性质:白色粉未,无臭无味,密度:方解石型2.711g/cm,霞石型2.93g/cm。溶点(110大气压)1289°C。难溶于水、醇,微溶于含有铵盐或二氧化碳的水溶液,可溶于稀醋酸、稀盐酸、稀硝酸,同时放出二氧化碳,呈放热反应。

石灰岩

d.用途:主要用作橡胶、塑胶、造纸等行业的填料,也用作涂料、油墨的填料。还用于牙膏、电焊条、有机合成、冶金、玻璃、石棉、油毛毡等生产。还是工业废水的中和剂,胃与十二指肠溃疡病的制酸剂、酸中毒的解毒剂。

主要反应式:Ca(OH)2+CO2→CaCO3+H2O

生产厂家:四川重庆松山化工厂、贵州安顺玻璃化工厂、云南昆明化工厂、甘肃兰州白银区化工厂、河南焦作化工三厂、河南密县化工厂、湖南衡阳第三化工厂、上海新江化工厂、上海碳酸钙厂、江苏宜兴石灰厂、浙江吴兴菱湖化工厂、安徽安庆化工原料厂、山东张店湖田化工厂、山东淄博罗村化工厂、北京矿石材料厂、河北唐山东矿化工厂和辽宁本溪石灰化工厂等。

重质碳酸钙

(俗称单飞粉、双飞粉、三飞粉、四飞粉)

a.分子式:CaCO3

b.相对分子质量:100.08

c.性质:白色粉未,无臭、无味。露置空气中无变化,密度2.71g/cm。溶点1339°C。几乎不溶于水,在含有铵盐或三氧化二铁的水中微溶解,不溶于醇。遇稀醋酸、稀盐酸、稀硝酸发生泡沸,并溶解。加热分解为氧化钙和二氧化碳。

d.用途:按粉碎细度的不同,工业上分为四种不同规格:单飞、双飞、三飞、四飞,分别用于各工业部门。

单飞粉:用于生产无水氯化钙,是重铬酸钠生产的原料,玻璃及水泥生产的主要原料。此外,也用于建筑材料和家禽饲料等。

双飞粉:是生产无水氯化钙和玻璃等的原料、橡胶和油漆的白色填料,以及建筑材料等。

三飞粉:用作塑胶、涂料及油漆的填料。

四飞粉:用作电线绝缘层之填料、橡胶模压制品以及沥青制油毡之填料。

e.主要原料及规格:石灰石(CaCO3)≥90%

f.制法及工艺流程:粉碎法是将含CaCO3在90%以上的石灰经粉碎、分级、分离而制得的产品。工艺流程为:

石灰石→粉碎→分级→镟风分离→重质碳酸钙生产厂家

山东青岛化肥厂和上海石粉厂等。

藏品信息

中国地质博物馆藏品信息:

中国地质博物馆石灰岩藏品(一)

描述 :中国本溪桥头小黄柏峪的石灰岩(Limestone)的标本照片。灰色;粒屑结构;块状构造;主要矿物组成为方解石

收藏单位 :中国地质博物馆

中国地质博物馆石灰岩藏品(二)

描述: 中国云都的石灰岩(Limestone)的标本照片 灰色;粒屑结构;块状构造;主要矿物组成为方解石。

收藏单位: 中国地质博物馆

重庆适合种麻疯果吗?

松香褪毛危害大

昨日,四川省食品添加剂协会的薛民乐告诉记者,松香和沥青都不是食品加工原料和加工助剂,松香是主要用于油漆、造纸、橡胶等工业的化工原料,绝对不能食用的,因而松香也未被列入国家GB2760-1996《食品添加剂使用卫生标准》加工助剂名单中。据他介绍,除去毛发可以通过生产工艺的环境加以控制,要使用松香才能脱毛的肯定与水温的控制不当有关。

记者了解到,褪毛用的木松香本身对人体毒性不大,但回锅重复使用,含有铅等重金属和有毒化合物,会污染禽畜肉,对人体的毒性很大。

特别是松香在氧化后产生的过氧化物会严重损害人体的肝脏和肾脏;同时松香在高温情况下还会发生氨解反应,产生大量氨气,损害操作工人的身体健康,同时污染周围环境。

业内人士告诉记者,如果松香混在禽畜肉中,烹调时一般会散发出苦味,消费者可以通过嗅觉加以判断。

磷酸是怎样生产出来的

按道理应该可以,因为重庆和印度的经纬度都江堰市是差不多的,下面介绍一下印度的种植.

这是一项利用“低技术”扶贫救困,缓解石油危机的“希望工程”。只要播下一种原生长在中南美洲的常绿植物的,就有可能长出能榨取生物柴油的果子。一旦启动这项从植物中生产生物柴油的麻疯果,将有可能为3600万印度人提供就业机会,并将3300公顷贫瘠干旱的土地乃至盐碱地开垦成财源滚滚的“油田”。

在印度的古吉拉特邦,当地的农民在德国农业专家的指导下,正在进行一项了不起的试验———在贫瘠干旱的土地上种植麻疯果。麻疯果的果实可用于生产生物柴油,这将给当地穷困的农民带来财源,使印度数百万失业者有事可干,并将减少印度这个贫油国对进口石油的依赖。

麻疯果是一种原生长在中南美洲的常绿植物,现在所有热带干旱地区都可以种植。它属于大戟属植物,最高能长至6米,能有30年的收获期。它是一种非常耐旱的植物,每年所需降雨量仅250毫米。麻疯果各部分都有毒,农民过去种植它是为了防止虫子吃庄稼。最新的利用价值是用其果核来榨油,生产供汽车用的生物柴油。德国戴姆勒-克莱斯勒公司研究所和豪亨海姆大学动植物产品研究所在印度实施的“土壤生产生物燃料项目”就是利用麻疯果的新尝试。

为此,戴姆勒-克莱斯勒公司提供了为期5年的130万欧元资助。另外,德国负责对外援助的投资和开发协会也提供了20万欧元。

麻疯果项目对于印度而言具有非同一般的意义,2003年8月14日,印度总理在独立日纪念会上称,“如果我们能启动从植物中生产生物柴油的麻疯果,那么就可能为3600万人提供就业,3300公顷贫瘠干旱的土地就可以开垦成油田。”目前,12亿人口的印度拥有4亿劳动力,其中3600万人失业。同时印度又是一个快速发展中的国家,对石油的需求非常大。城市交通拥挤,空气污染也十分严重。麻疯果项目如能如期实现,无疑是给印度的经济发展带来新的希望。

麻疯果可以种植在未被利用的贫瘠干旱地区,摘其果核可用来榨油,榨油的方法也特别简单,只要有台压榨机和几个炉子就行。生产出的油除了进一步加工成燃料外,还可以生产供化工业用的脂肪酸或甘油。但麻疯果不能直接用于蛋白质添加剂或作为肥料,因为它是有毒的。

克劳斯·贝克是德国豪亨海姆大学的教授,他研究麻疯果已有多年的经验,印度的这一项目正是他2000年给古吉拉特邦“盐和海产化学品研究中心”高斯汉博士的一封信促成的。贝克教授认为当地的盐碱地非常适合种植麻疯果,能给农民带来实惠。贝克教授的倡议得到了戴姆勒-克莱斯勒公司和德国投资和开发协会的支持。戴姆勒-克莱斯勒公司今年夏天就开始了用麻疯果生产的生物柴油进行试验,并制定了相应的欧洲标准14924。公司用这种柴油加到C型奔驰车中,在印度各地行驶了5900公里,证明车辆发动机和各部件都没有问题。

印度在2003年已与贝克教授负责的项目小组签订了开发麻疯果的土地使用协议,还派代表专门参加这一项目的实施。现在第二茬麻疯果已在试验地里生长,预计2005年,印度的加油站就会出现第一批用麻疯果生产的生物柴油。根据印度正在实施的“印度清洁空气”,到2005年,印度加油站供应的柴油要含有5%%的生物柴油,到2010年达到10%%的混合比例。这一规定几乎与欧洲的一致,因此要落实起来还有许多工作要做。

对贝克教授来说,在印度推广种植麻疯果担心的不是地上长不出所要的东西,而是当地官员和农民缺乏长远的眼光,急于要让土地上的东西变成钱,而不支持有长远意义的项目

磷酸是制取各种工业和农业用磷制品的基础原料,目前国内外磷酸的生产工艺主要有“热法”和“湿法”两种。二者相比较,湿法磷酸的工艺特点是产品成本相对较低,但是质量较差,且对磷矿的品位和杂质含量都有较高的要求,目前国际上制备工业磷酸主要用湿法,我国湿法磷酸主要用于生产农业用化肥。热法磷酸的工艺特点是产品质量好,但价格较贵,而且属高能耗技术,电力能源在热法磷酸总的制造链中权重达60%。随着能源短缺日趋严重,电价节节攀升,热法磷酸的价格也随之上涨,造成以其为原料的磷化工产品逐渐丧失市场竞争能力。在这种形势下,磷酸工业不断改进生产工艺,以期降低能耗和生产成本。 热法磷酸用两步燃烧水合技术 热法磷酸工艺即以电热法生产的黄磷为原料,经过燃烧水合而制成含量85%的磷酸。对于热法磷酸生产中热能的回收利用,20世纪50年代以前美国进行过试验研究,但未取得很大的进展,更未实现工业化生产。80年代后期,德国有较大规模的该类装置投入运行。近年我国云南省也有一套规模较小的装置投入试运行。 带有热能回收装置的热法磷酸生产工艺通常用两步法,即磷的燃烧和P2O5的水合分别在两个设备内进行。其中,P2O5水合设备与传统的水化塔相似;燃磷设备内设置换热管,以回收磷的燃烧热并副产蒸汽。燃磷设备的技术关键在于如何既防止换热管被高温P2O5气体腐蚀,又能提供良好的传热条件。各国专利技术都是通过控制工艺条件,使换热管表面形成一层特殊的磷化物来加以保护。原德国赫司特集团对其一步法7万t/a H3PO4装置进行了改造,即在原燃烧水化塔前面增设一个塔,专供燃磷使用,原有的燃烧水化塔则改为单纯的水化塔,两塔的顶部以管道相连接,把燃磷塔产生的含磷气体导入水化塔进行水化。磷燃烧塔内钢管表面没有任何防腐衬里,而是通过控制工艺条件,来防止钢管被腐蚀。 我国云南省化工研究院与清华大学工程力学系合作,对热法磷酸的热能回收利用进行了研究。他们用两步法,即磷的燃烧和P2O5的水化分别在两个塔内进行。实际上燃磷塔也是热能回收装置,相当于一台余热锅炉,回收的热能用来生产0.8MPa的蒸汽。其中热能回收装置用膜式换热器结构,以提高热能的回收效率并满足磷燃烧所需要的空间。该工艺已于2001年通过云南省科技厅验收鉴定,首套1.5万t/a热法磷酸装置的热能回收工业化装置于2006年在重庆川东化工(集团)有限公司投入运行。 大型湿法磷酸进入工业级磷酸行业 湿法磷酸工艺即由磷矿石经过无机酸(主要是硫酸或盐酸)分解,先制得肥料用粗磷酸,再经各种步骤净化除杂,最后浓缩制成纯度与热法工艺相当的工业级磷酸。目前主要的净化方法有化学沉淀法、离子交换树脂法、结晶法、溶剂沉淀法和溶剂萃取法。溶剂萃取法具有所得产品纯度高、生产工艺和设备相对简单、能耗低、原料消耗少、生产能力大、分离效果好、回收率高、环境污染少、生产过程易于实现自动化与连续化,而且有利于的综合利用等优点,因而引起了广泛的关注。目前,溶剂萃取法已成为国外净化湿法磷酸的最有效方法之一,许多发达国家已正式用溶剂萃取法生产工业级和食品级磷酸。 由于我国磷矿绝大部分是高杂质含量的中、低品位磷矿,给湿法磷酸净化带来困难。10多年来,我国许多科研单位开展了湿法磷酸净化的研究工作,但迄今尚未形成大规模工业化,究其原因主要是萃取剂价格昂贵、回收困难,造成生产成本过高。四川大学和贵州宏福实业开发有限公司合作开发了具有自主知识产权的湿法磷酸净化技术,该工艺包括预处理、脱硫、过滤分离、萃取、深脱硫、洗涤、反萃和浓缩等过程,工艺特点有:①在预处理阶段设置一个脱硫脱氟缓冲槽,在萃取槽和洗涤槽中间设置一个精脱硫除铁槽;②萃取、洗涤和反萃过程均在旋转振动筛板塔中进行;③在洗涤塔与反萃塔之间设置一个降乳化槽。该工艺磷酸净化率为70%~80%,磷的总得率99%,溶剂消耗量6kg/t。 窑法磷酸正式投入工业化运行 窑法磷酸工艺即在回转窑中用煤气加热低品位磷矿石粉,进行还原氧化反应,由循环酸吸收转窑窑气制备工业磷酸。我国窑法磷酸从1988年开始试验研究,2005年3月湖北三新磷酸有限公司先后对含磷25%、20%、18%、15%、12%、9%等品级的磷矿进行了小试和中试,取得了成功,磷的还原率达到90%。在此基础上,该公司又建成了1万t/a的工业磷酸CDK装置。 窑法磷酸新工艺的主要特点是:它可以使用高杂质含量的中低品位磷矿,生产出优质的高浓度磷酸;当磷矿中SiO2含量较高时,P2O5含量可低至17%;制得的磷酸质量和浓度可以达到或接近热法磷酸。另外,该工艺由于充分利用生产过程的化学反应热,显著降低了生产能耗。而且该工艺可以用煤为燃料,使产品成本相对低廉。据估算,窑法磷酸产品成本介于热法和湿法磷酸之间。与湿法磷酸相比,它不受磷矿品位和杂质含量的限制,也不受硫的限制;与热法相比,它大大降低生产能耗,而且能够避免用昂贵的电能。因此,该工艺十分符合我国的磷特点,有着很好的发展前景。 盐酸法制磷酸新工艺走出实验室 一直以来制约磷矿产业发展的瓶颈——中低品位矿利用技术难题终于被破解。武汉市化工研究院承担的湖北省科技攻关重点项目——盐酸分解中低品位磷矿制造工业磷酸新工艺(简称“盐酸法”)中试装置,于2006年8月底一次性试车成功,生产出的肥料级磷酸和工业级磷酸,质量达到国家标准。这意味着经过多年努力,“盐酸法”终于走出实验室,向工业化生产迈出一大步。 “盐酸法”可直接利用中低品位磷矿制造工业磷酸,不需要选矿,能节约大量电能、燃煤和硫。该法适用于任何品位的磷矿石,P2O5的总回收率可达93%以上。 建议现有热法磷酸工艺用两步法,以回收热能,降低生产成本。湿法磷酸的精制技术需进一步提高,降低工业级湿法商品磷酸及磷酸盐的生产成本,并以精制湿法磷酸替代部分热法磷酸,特别是食品级磷酸。 生产的方法很多的,要看生产条件,当地环境和现阶段的时市场供求